

Solaris 8 Administrator's Guide
By Paul Watters
January 2002
0-596-00073-1, Order Number: 0731
400 pages, $39.95 US $59.95 CA #28.50 UK

Chapter 4
Network Configuration
After undertaking the complex tasks required to configure a single host, planning and setting up an entire
network can be daunting. In this chapter, you'll learn how to configure a Solaris-based network, including the
configuration of single or multiple network interfaces, static and dynamic routing, and network
troubleshooting. In addition, examples for enabling devices and testing interfaces will be provided.

Creating Networks and Subnets
While Solaris systems are capable of operating in an isolated, non-networked environment, Solaris is a
strongly network-oriented operating system. It provides the following tools to support networking, both
between hosts on a local area network and to the worldwide Internet:

● Support for single, dual, and quad ethernet devices

● Standardized network device naming

● Support for a wide variety of network devices

● Configuration of interfaces to support IPv4 and IPv6

● Routing using static and dynamic protocols

● Troubleshooting and performance measurement

● Blocking/acess filtering on all TCP and UDP ports

● Transmission using Ethernet and FDDI

● Support for Asynchronous Transfer Mode (ATM) networks

In combination, these features make it easy to construct Solaris networks, especially networks in which
Solaris systems are assigned backbone functions in routing and packet filtering.

http://www.oreilly.com/catalog/prdindex.html
http://www.oreilly.com/catalog/search.html
http://www.oreilly.com/catalog/solaris8/

A typical Solaris local area network will contain one or more servers, which provide network services to local
clients. These clients can be other Solaris systems, but are just as likely to be Linux, Microsoft Windows, or
other Unix systems. In some network designs, each major service is located on its own system, to prevent
downtime on one system from disabling access to all services. This brand of server role diversification is
taken one step further by the E10000 system, which can be logically partitioned to form 64 independent
virtual servers, all physically located on the same machine. Thus, if one domain is taken offline for service,
other domains are unaffected.

The numbers and types of services provided on a Solaris local area network are virtually endless, but a
typical configuration would include the following service types:

Mail server Authentication server

USENET server Resource management server

UNIX-compatible file server Remote access server

PC-compatible file server Remote procedure call server

Backup server WWW server

Print server Directory server

Solaris provides the following services that implement these service types:

Sendmail Kerberos

Inn NIS+

NFS Telnet and FTP

Samba RPC daemon

Netbackup Apache

System V and BSD print systems LDAP

Figure 4-1 shows a sample server setup for a single Class C network.

Figure 4-1.Sample Solaris server configuration for a
single Class C network

Once a server setup has been decided for the local area network, a number of other issues, such as
assigning IP address ranges to individual subnets and IP addresses to individual hosts, must be addressed.
(Details of how to assign these addresses are provided in Chapter 2.) A modern network is generally
connected using 10/100M Ethernet cabling, where hosts on the same subnet are ultimately connected to a
single router via a switch or a hub. Figure 4-2 shows a single local network, with the hosts chardon, blanc,
riesling, and semillon connected via a central switch. If all hosts are cabled with 100M ethernet cable, all
traffic on the network is transmitted at the 100M rate. Mixed mode cabling and packet transmission rates can
be problematic and, since most Solaris network interface cards now support 100M, standardizing on this rate
is preferable. This simple network has no gateway, does not connect to other networks or to the Internet, and
does not require a router.

Figure 4-2.Simple Solaris network
for a single Class C network not

connected to the Internet

If a connection to another network is required, the switch may be connected through to a router, as shown in
Figure 4-3.

Figure 4-3.Simple Solaris network
for a single Class C network

connected to another network

This enables all packets to be passed from chardon, blanc, riesling, and semillon to the switch, and through
to the "internal" interface of the router. Alternatively, one of the hosts, such as chardon, may have a modem
attached to one of its serial ports, through which an Internet connection is established. If blanc, riesling, and
semillon wish to have direct Internet access, without telneting to chardon, they have to register chardon as
their gateway. The switch would ensure that the packets were delivered to the correct gateway.

In addition, multiple hubs and switches may be daisy-chained to connect remote rooms, floors, or buildings
to the same network. No more than three "hops" should exist between a router and its remotest client;
otherwise, the number of packet collisions will become unacceptably high.

Most sites start with a Class C network, then begin to host multiple Class C networks, which must be
connected using a router. Before we examine how to install and configure a router, let's look at the
configuration of individual network interfaces more closely.

Configuring Network Interfaces
Although the various Solaris installation programs will happily configure built-in network interfaces at
installation, there are several situations where you may need to add another interface or modify the
configuration of the existing interfaces. These situations include:

● Setting up an existing host as a router

● Relocating a host to a different subnet

● Setting up load balancing across different interfaces

In order to enable a network interface under Solaris, several steps may be necessary. These include:

● Installing any device drivers

● Reconfiguring the system by rebooting

● Assigning an IP address to the interface

● Deciding whether the interface acts as a router component or as a component of a multi-homed host

● Creating a hosts entry that maps the IP address to a hostname

● Configuring and plumbing the interface for passing traffic

Device drivers are typically stored in /kernel/drv (or as defined in /etc/system) and listed in
/etc/device_aliases. For example, the standard quad ethernet connector supplied by Sun has the driver
/kernel/drv/qfe, and has its alias listed in /etc/device_aliases as qfe SUNW,qfe. Rebooting with the following
command forces a reconfiguration reboot:

bash-2.03# touch /reconfigure; init 6

Alternatively, from the OpenBoot PROM monitor, the following command can be used to force a
reconfiguration boot:

OK boot -r

An IP address is assigned to the interface by inserting the IP address into a hostname file, located in the /etc
directory. For a system with a single interface (e.g., /dev/eri0), such as the Blade 100, the hostname file is
called hostname.eri0, where eri is the device name and 0 is the interface number.

Alternatively, a quad ethernet card (with devices /dev/qfe0, /dev/qfe1, /dev/qfe2, and
/dev/qfe3) would have four hostname files containing distinct IP addresses: hostname.qfe0, hostname.qfe1,
hostname.qfe2, and hostname.qfe3. These may be allocated sequentially, such as 192.64.18.1,
192.64.18.2, 192.64.18.3, and 192.64.18.4, if the host is multi-homed, or distinctly, where the
system acts as a router rather than a multi-homed host.

A mulit-homed host allows data to be exchanged only on the local area network (including with the router
defined for that network), while a router is responsible for conveying packets between networks. To prevent
routing, a multi-homed host must touch the file /etc/notrouter. In addition, the default router for the local
network should have its IP address inserted into the file /etc/defaultrouter.

You can create a hosts entry for each interface in the /etc/hosts file or by inserting a record into whatever
distributed naming service is mandated by /etc/nsswitch.conf. For example, if the IP address contained in
hostname.qfe0, hostname.qfe1, hostname.qfe2, and hostname.qfe3 were to be mapped to the hostnames
www1, www2, www3, and www4, the /etc/hosts file would contain the following entries:

bash-2.03# cat /etc/hosts
www1 192.64.18.1
www2 192.64.18.2
www3 192.64.18.3
www4 192.64.18.4

Figure 4-4 shows a logical configuration of a quad Ethernet card in a single host, operating as four
independent web servers.

Figure 4-4.Logical configuration of a quad Ethernet card

Alternatively, if DNS is being used (as shown in Chapter 5), the following entries would need to be made in
the appropriate zone file:

www1 IN A 192.64.18.1 ;webserver
www2 IN A 192.64.18.2 ;webserver
www3 IN A 192.64.18.3 ;webserver
www4 IN A 192.64.18.4 ;webserver

The ifconfig command is used to plumb and configure each interface, so that it can pass and receive IP
traffic. Once the interface has been enabled, the ifconfig command can be used to view all active interfaces:

bash-2.03# /usr/sbin/ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1
 inet 127.0.0.1 netmask ff000000
eri0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 10.64.18.3 netmask ffffff00 broadcast 10.64.18.255
lo0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6> mtu 8252 index 1
 inet6 ::1/128
eri0: flags=2000841<UP,RUNNING,MULTICAST,IPv6> mtu 1500 index 2
 inet6 fe80::203:baff:fe04:a4e8/10

If an interface is configured incorrectly, the following error message will be displayed for each interface that
is checked individually using ifconfig:

bash-2.03# ifconfig eri0
ifconfig: status: SIOCGLIFFLAGS: eri0: no such interface

Assuming that the eri0 device is installed correctly, with the appropriate device drivers, the following ifconfig
command should configure the device at the hardware level:

bash-2.03# /usr/sbin/ifconfig eri0 plumb

Once the device is plumbed, its runtime parameters, such as its IP address, can also be configured by using
the ifconfig command:

bash-2.03# /usr/sbin/ifconfig eri0 10.64.18.3 broadcast 10.64.18.255 netmask 255.255.
 255.0

To bring up the interface, the up keyword must be used:

bash-2.03# /usr/sbin/ifconfig eri0 up

All of these individual commands can be combined into the following command, which configures the
hardware, sets all parameters, and brings up the interface:

bash-2.03# /usr/sbin/ifconfig eri0 10.64.18.3 broadcast 10.64.18.255 netmask 255.255.
 255.0 plumb up

Depending on your local network configuration, it might be appropriate to create a point-to-point connection,
rather than the previous generic connection. For example, if we want to restrict access to a secure database
system, we might create a point-to-point connection that allows access to the database from only the host to
which it is directly connected, as shown in Figure 4-5. In this scenario, the database connects to a server,
which then connects to the router; no traffic can pass directly from the router to the database system without
first passing through the intermediate server. Thus, if a hacker wanted to break into the database system, he
would need to breach both the router and the server system.

Figure 4-5.Securing a database system by point-to-
point networking

In order to determine whether the interfaces are being addressed correctly by other hosts on the local
network, use the arp command to display all active connections between the localhost and other hosts:

bash-2.03# /usr/sbin/arp -a

Net to Media Table: IPv4
Device IP Address Mask Flags Phys Addr
------ -------------------- --------------- ----- ---------------
eri0 hp 255.255.255.255 00:50:ba:13:08:18
eri0 austin 255.255.255.255 SP 00:03:ba:04:a4:e8
eri0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00

This displays the ethernet address to IP address mapping for the local host. The flags displayed include:

P

Published address

S

Static address

U

Unresolved address

M

Mapping address for multicast

Finally, it may be necessary to set some protocol transmission parameters manually to achieve optimal
performance. Use the ndd command to set parameters for TCP, UDP, ARP, and IP. In addition, ndd can be
used to display the list of all current parameter values relating to a specific protocol. For example, to display
the parameters currently associated with TCP, use the following command:

bash-2.03# ndd /dev/tcp \?
? (read only)
tcp_close_wait_interval (read and write)
tcp_conn_req_max_q (read and write)
tcp_conn_req_max_q0 (read and write)
tcp_conn_req_min (read and write)
tcp_conn_grace_period (read and write)
tcp_cwnd_max (read and write)
tcp_debug (read and write)
tcp_smallest_nonpriv_port (read and write)
tcp_ip_abort_cinterval (read and write)
tcp_ip_abort_linterval (read and write)
tcp_ip_abort_interval (read and write)
tcp_ip_notify_cinterval (read and write)
tcp_ip_notify_interval (read and write)
tcp_ip_ttl (read and write)
tcp_keepalive_interval (read and write)
tcp_maxpsz_multiplier (read and write)
tcp_mss_def (read and write)
tcp_mss_max (read and write)
tcp_mss_min (read and write)
tcp_naglim_def (read and write)
tcp_rexmit_interval_initial (read and write)
tcp_rexmit_interval_max (read and write)
tcp_rexmit_interval_min (read and write)
tcp_wroff_xtra (read and write)
tcp_deferred_ack_interval (read and write)
tcp_snd_lowat_fraction (read and write)
tcp_sth_rcv_hiwat (read and write)
tcp_sth_rcv_lowat (read and write)
tcp_dupack_fast_retransmit (read and write)
tcp_ignore_path_mtu (read and write)
tcp_rcv_push_wait (read and write)
tcp_smallest_anon_port (read and write)
tcp_largest_anon_port (read and write)
tcp_xmit_hiwat (read and write)
tcp_xmit_lowat (read and write)
tcp_recv_hiwat (read and write)
tcp_recv_hiwat_minmss (read and write)
tcp_fin_wait_2_flush_interval (read and write)
tcp_co_min (read and write)
tcp_max_buf (read and write)
tcp_zero_win_probesize (read and write)
tcp_strong_iss (read and write)
tcp_rtt_updates (read and write)
tcp_wscale_always (read and write)
tcp_tstamp_always (read and write)

tcp_tstamp_if_wscale (read and write)
tcp_rexmit_interval_extra (read and write)
tcp_deferred_acks_max (read and write)
tcp_slow_start_after_idle (read and write)
tcp_slow_start_initial (read and write)
tcp_co_timer_interval (read and write)
tcp_extra_priv_ports (read only)
tcp_extra_priv_ports_add (write only)
tcp_extra_priv_ports_del (write only)
tcp_status (read only)
tcp_bind_hash (read only)
tcp_listen_hash (read only)
tcp_conn_hash (read only)
tcp_queue_hash (read only)
tcp_host_param (read and write)
tcp_1948_phrase (write only)

Obtaining Network Statistics
Once all network interfaces are configured as required, use the netstat command, which is responsible for
gathering network statistics of various types, to verify their operational status. This data is gathered by using
the interfaces on the local host.

netstat is able to gather statistics for the following types of data:

● Data grouped by protocol type

● Device statistics grouped by address type, including IPv4, IPv6, and Unix addresses

● DHCP data

● Interface data grouped by multicast

● Routing table details (including multicast)

● STREAMS data

● The state of all available IP interfaces

● The state of all active sockets, routes, physical interfaces, and logical interfaces

In the following sections, we'll review each of these data gathering operations and discuss how each is used
to aid in troubleshooting and pinpointing performance issues.

Protocol Statistics

The per-protocol statistics can be divided into several categories:

RAWIP (raw IP) packets TCP packets

IPv4 packets ICMPv4 packets

IPv6 packets ICMPv6 packets

UDP packets IGMP packets

Each packet type has a specific set of measures associated with it. For example, RAWIP packets have
counters that check the number of input (rawipInDatagrams) and output (rawipOutDatagrams) datagrams
received since boot. UDP has a corrsponding set of counters that measure the number of input
(udpInDatagrams) and output (udpOutDatagrams) datagrams received since boot. In addition to counters of
normal events, netstat reports on error events, such as the number of UDP input (udpInErrors) and the
number of UDP output (udpOutErrors) errors. These values should be monitored regularly to ensure that the
ratio of error to normal conditions does not increase over time. For example, there are 293 tcpActiveOpens
shown in the following listing, compared to only one tcpAttemptFails event. If the ratio of tcpAttemptFails to
tcpActiveOpens increases over time for TCP traffic, the appropriate TCP parameters may need to be
modified by using ndd, or a network error may need to be diagnosed. Here's a representative set of
examples for understanding per-protocol errors for IPv6.

bash-2.03$ netstat -s

IPv6 ipv6Forwarding = 2 ipv6DefaultHopLimit = 255
 ipv6InReceives = 0 ipv6InHdrErrors = 0
 ipv6InTooBigErrors = 0 ipv6InNoRoutes = 0
 ipv6InAddrErrors = 0 ipv6InUnknownProtos = 0
 ipv6InTruncatedPkts = 0 ipv6InDiscards = 0
 ipv6InDelivers = 25 ipv6OutForwDatagrams= 0
 ipv6OutRequests = 42 ipv6OutDiscards = 2
 ipv6OutNoRoutes = 0 ipv6OutFragOKs = 0
 ipv6OutFragFails = 0 ipv6OutFragCreates = 0
 ipv6ReasmReqds = 0 ipv6ReasmOKs = 0
 ipv6ReasmFails = 0 ipv6InMcastPkts = 0
 ipv6OutMcastPkts = 14 ipv6ReasmDuplicates = 0
 ipv6ReasmPartDups = 0 ipv6ForwProhibits = 0
 udpInCksumErrs = 0 udpInOverflows = 0
 rawipInOverflows = 0 ipv6InIPv4 = 0
 ipv6OutIPv4 = 0 ipv6OutSwitchIPv4 = 0

ICMPv6 icmp6InMsgs = 0 icmp6InErrors = 0
 icmp6InDestUnreachs = 0 icmp6InAdminProhibs = 0
 icmp6InTimeExcds = 0 icmp6InParmProblems = 0
 icmp6InPktTooBigs = 0 icmp6InEchos = 0
 icmp6InEchoReplies = 0 icmp6InRouterSols = 0
 icmp6InRouterAds = 0 icmp6InNeighborSols = 0
 icmp6InNeighborAds = 0 icmp6InRedirects = 0
 icmp6InBadRedirects = 0 icmp6InGroupQueries = 0
 icmp6InGroupResps = 0 icmp6InGroupReds = 0
 icmp6InOverflows = 0
 icmp6OutMsgs = 8 icmp6OutErrors = 0
 icmp6OutDestUnreachs= 0 icmp6OutAdminProhibs= 0
 icmp6OutTimeExcds = 0 icmp6OutParmProblems= 0
 icmp6OutPktTooBigs = 0 icmp6OutEchos = 0
 icmp6OutEchoReplies = 0 icmp6OutRouterSols = 3
 icmp6OutRouterAds = 0 icmp6OutNeighborSols= 1
 icmp6OutNeighborAds = 0 icmp6OutRedirects = 0
 icmp6OutGroupQueries= 0 icmp6OutGroupResps = 4

 icmp6OutGroupReds = 0

Address Type Statistics

The per-address statistics can be divided into three categories:

● inet (AF_INET)

● inet6 (AF_INET6)

● unix (AF_UNIX)

Let's look at sample output from the AF_UNIX sockets:

bash-2.03$ netstat -f unix

Active UNIX domain sockets
Address Type Vnode Conn Local Addr Remote Addr
30000d03738 stream-ord 30000d1eb78 00000000 /tmp/.X11-unix/X0
30000d038e0 stream-ord 00000000 00000000
30000d03a88 stream-ord 30000ce4a30 00000000 /tmp/jd_sockV6
30000d03c30 stream-ord 30000a62d78 00000000 /dev/kkcv
30000d03dd8 stream-ord 30000a62f50 00000000 /dev/ccv

Here we can see a number of different active sockets using Unix type addressing, such as the X11 server,
which has the address 30000d03738.

Multicast Statistics

The multicast statistics option provides an overview of interfaces that are currently listening for multicast
broadcasts on the 224.0.0.1 (ALL_HOSTS) address. This is so that packets can be routed appropriately
using the router discovery daemon (in.rdisc), discussed in the next section, "Routing." In the following
example, both the IPv4 and IPv6 multicast groups are displayed:

bash-2.03$ netstat -g

Group Memberships: IPv4
Interface Group RefCnt
--------- -------------------- ------
lo0 224.0.0.1 1
eri0 224.0.0.1 1

Group Memberships: IPv6
If Group RefCnt
----- ------------------------ ------
lo0 ff02::1:ff00:1 1
lo0 ff02::1 1
eri0 ff02::202 1
eri0 ff02::1:ff04:a4e8 1
eri0 ff02::1 2

Routing Statistics

The kernel maintains a table of routes, constructed by the routing daemon, in.routed. The various routes that
have been configured are always viewable by checking the routing statistics:

bash-2.03$ netstat -r

Routing Table: IPv4
Destination Gateway Flags Ref Use Interface
-------------------- -------------------- ----- ----- ------ ---------
10.64.18.0 austin U 1 5 eri0
224.0.0.0 austin U 1 0 eri0
localhost localhost UH 25 215051 lo0

Here, we can see there are two network routes available for packets on the primary Ethernet interface eri0:
the 10.64.18.0 network and the 224.0.0.0 multicast network. In addition, the loopback interface (lo0)
has the local host interface, which is commonly used for troubleshooting and testing. These routes are all
IPv4; however, IPv6 routing details are also displayed:

Routing Table: IPv6
Destination/Mask Gateway Flags Ref Use If
--------------------------- --------------------------- ----- --- ------ -----
fe80::/10 fe80::203:baff:fe04:a4e8 U 1 0 eri0
ff00::/8 fe80::203:baff:fe04:a4e8 U 1 0 eri0
default fe80::203:baff:fe04:a4e8 U 1 0 eri0
localhost localhost UH 5 28 lo0

STREAMS Statistics

STREAMS is a System V package that provides access to system calls, standard libraries, and the kernel for
the purposes of writing network applications. Any application that uses STREAMS has a specific set of
properties about which statistics can be collected, since the I/O operations are distinct from other networking
APIs (such as the BSD-style socket API). netstat reports these statistics, including queues, which comprise
the read/write operations that characterize a stream:

bash-2.03$ netstat -m
streams allocation:
 cumulative allocation
 current maximum total failures
streams 326 340 7634 0
queues 938 962 18662 0
mblk 1144 1651 7773 0
dblk 1140 1729 2349590 0
linkblk 11 169 18 0
strevent 9 169 121739 0
syncq 25 50 101 0
qband 0 0 0 0

1646 Kbytes allocated for streams data

More details can be obtained by reading the manpage for streamio.

IP Interface Statistics

netstat also reports statistics obtained at the IP level. This includes the number of input and output packets

counted, the number of input and output errors, and the number of packet collisions. Again, separate entries
are shown for IPv4 and IPv6:

bash-2.03$ netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 227695 0 227695 0 0 0
eri0 1500 austin austin 2573 0 2130 0 0 0

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis
lo0 8252 localhost localhost 227705 0 227705 0 0
eri0 1500 fe80::203:baff:fe04:a4e8/10 fe80::203:baff:fe04:a4e8 2573 0
2130 0 0

Combined Socket, Route, and Interface Statistics

Most administrators prefer to combine the information that netstat provides into a single report-style format.
This can be achieved by using the combined route, socket, and interface statistics, as shown in the output in
Example 4-1.

Example 4-1: Output of the netstat-a command

bash-2.03$ netstat -a
UDP: IPv4
 Local Address Remote Address State
-------------------- -------------------- -------
 *.route Idle
 . Unbound
 . Unbound
 *.sunrpc Idle
 . Unbound
 *.32771 Idle
 *.sunrpc Idle
 . Unbound
 *.32775 Idle
 *.32779 Idle
 *.32780 Idle
Routing
. Unbound
 *.32821 Idle
 *.32822 Idle
 *.32823 Idle
 *.name Idle
 *.biff Idle
 *.talk Idle
 *.time Idle
 *.echo Idle

UDP: IPv6
 Local Address Remote Address State
If
--------------------------------- --------------------------------- ---------- -

 . Unbound
 *.sunrpc Idle

 . Unbound
 *.32771 Idle
 *.32779 Idle
 . Unbound
 *.32821 Idle
 *.time Idle

TCP: IPv4
 Local Address Remote Address Swind Send-Q Rwind Recv-Q State
-------------------- -------------------- ----- ------ ----- ------ -------
 . *.* 0 0 24576 0 IDLE
 *.sunrpc *.* 0 0 24576 0 LISTEN
 . *.* 0 0 24576 0 IDLE
 *.sunrpc *.* 0 0 24576 0 LISTEN
 . *.* 0 0 24576 0 IDLE
 *.32775 *.* 0 0 24576 0 LISTEN
 *.32776 *.* 0 0 24576 0 LISTEN
 *.32782 *.* 0 0 24576 0 LISTEN
 *.32783 *.* 0 0 24576 0 LISTEN

TCP: IPv6
Local Address Remote Address Swind Send-Q Rwind Recv-Q State If
. *.* 0 24576 0 IDLE
*.sunrpc *.* 0 0 24576 0 LISTEN
. *.* 0 0 24576 0 IDLE
*.32775 *.* 0 0 24576 0 LISTEN
localhost.32780 localhost.32775 32768 0 32768 0 CLOSE_WAIT
*.32782 *.* 0 0 24576 0 LISTEN
*.32791 *.* 0 0 24576 0 LISTEN
*.ftp *.* 0 0 24576 0 LISTEN
*.telnet *.* 0 0 24576 0 LISTEN

Active UNIX domain sockets
Address Type Vnode Conn Local Addr Remote Addr
30000d03738 stream-ord 30000d1eb78 00000000 /tmp/.X11-unix/X0
30000d038e0 stream-ord 00000000 00000000
30000d03a88 stream-ord 30000ce4a30 00000000 /tmp/jd_sockV6
30000d03c30 stream-ord 30000a62d78 00000000 /dev/kkcv
30000d03dd8 stream-ord 30000a62f50 00000000 /dev/ccv

Some of the TCP messages shown in this output, for both IPv4 and IPv6, may be unfamiliar, so we review
each of them individually in Table 4-1.

Table 4-1:TCP constants reported by netstat

Message Description

BOUND Socket is bound.

CLOSED Socket is closed.

CLOSING Socket is closing.

CLOSE_WAIT Socket is waiting to close.

ESTABLISHED Socket has connected successfully.

FIN_WAIT_1 Socket is closing (local).

FIN_WAIT_2 Socket is closing (remote).

IDLE Socket is idle.

LAST_ACK Socket will close after receiving last acknowledgment.

LISTEN Socket is active and listening.

SYN_RECEIVED Socket is being synchronized.

SYN_SENT Socket is creating a connection.

TIME_WAIT Socket is waiting to close.

Routing
Imagine that you are a courier, and your run always starts at the local courier depot. You're given a list of
addresses, which are associated with a set of packages, and your goal is to deliver them in as little time as
possible, subject to the following constraints:

● The number of roads you take to deliver each package must be minimized.

● You must avoid deadends and accidents.

● You can only determine which roads to take by consulting a street directory and by crosschecking
street names along your path with those in your directory.

If this seems like a fairly trivial task for a courier, consider how much more difficult the job would be if the
following conditions prevailed:

● The number of possible roads increases exponentially each year. You might be asked to take roads
you've never heard of before!

● There is no way of knowing, in advance, where accidents or deadends might occur.

● The street directory you have is completely out of date, because the number of highways increases
exponentially each year.

This scenario describes the difficulties faced by the emergence of the Internet and the massive
interconnections between hosts and networks. In order for a packet of data to be transferred from host A to
host B, a physical path must be identified for the packet to travel.

There is no central lookup service that decides how to route each packet between all possible combinations
of two hosts on the Internet (i.e., between the sender and the receiver). This means routes must be
generated dynamically. (The only exceptions to this rule are certain situations where a predictable static
route may be installed.)

When transferring data around the Internet or between subnets, intermediate hosts must be responsible for
transferring packets between networks; these hosts are called routers and are responsible for routing
packets between hosts, which can be separated by single subnets or by entire continents. To gain insight
into how many routers a packet transfer may involve, let's use the traceroute command to display the "hops"
required to connect from a host in Sydney, Australia, to the Sun Microsystems web server:

bash-2.03$ traceroute wwwwseast.usec.sun.com/
Tracing route to wwwseast.usec.sun.com [192.9.49.30]
over a maximum of 30 hops:
 1 184 ms 142 ms 138 ms 202.10.4.131
 2 147 ms 144 ms 138 ms 202.10.4.129
 3 150 ms 142 ms 144 ms 202.10.1.73
 4 150 ms 144 ms 141 ms atm11-0-0-11.ia4.optus.net.au [202.139.32.17]
 5 148 ms 143 ms 139 ms 202.139.1.197
 6 490 ms 489 ms 474 ms hssi9-0-0.sf1.optus.net.au [192.65.89.246]
 7 526 ms 480 ms 485 ms g-sfd-br-02-f12-0.gn.cwix.net [207.124.109.57]
 8 494 ms 482 ms 485 ms core7-hssi6-0-0.SanFrancisco.cw.net [204.70.10.9]
 9 483 ms 489 ms 484 ms corerouter2.SanFrancisco.cw.net [204.70.9.132]
 10 557 ms 552 ms 561 ms xcore3.Boston.cw.net [204.70.150.81]
 11 566 ms 572 ms 554 ms sun-micro-system.Boston.cw.net [204.70.179.102]
 12 577 ms 574 ms 558 ms wwwwseast.usec.sun.com [192.9.49.30]
Trace complete.

Here, we can see that some 12 hosts are required to transfer packets between the sender and the receiver.
In addition, the observed response times can be quite slow--often more than half a second. It is possible for
attempted connections to time out. This can be very useful when trying to identify which intermediate host
and/or network is having problems when your remote connection to a host half a world away suddenly dies!

In this section, we'll examine how Solaris solves a number of the classic routing problems.

Static routing typically involves creating a direct physical connection between two hosts, where the
implementation of dynamic routing would be wasteful or a security risk. For example, if your local network
has three subnets that need to share data, a static route could be created between each router and the other
two routers in the network. The number of specific routes required to allow data to flow seamlessly between
networks is directly proportional to the square of the number of routers on the network. Every time a change
is made to the network topology, these routes will have to be modified manually. If that sounds like too much
hard work, consider the situation where it might be desirable: a secure database server that can be
accessible only by knowing the route to the host and is not publicly announced. Instead of permitting route
discovery, a static route is an appropriate technique here. This could be implemented by creating a point-to-
point configuration using ifconfig on a secondary interface, as discussed in the network interface
configuration section.

The alternative to static routing is dynamic routing, which involves two daemons: the routing daemon proper
(in.routed) and the route discovery daemon (in.rdisc). The in.routed daemon implements the Routing
Information Protocol, and is responsible for updating and managing entries in the kernel's routing tables. It
uses UDP (port 520) for performing routing operations and operates on all network interfaces that have been
plumbed and are identified as up.

If the /etc/notrouter file does not exist, and given that two or more operational interfaces can be found, the

host begins to act as a router. Data can then be exchanged between data received on one interface,
destined to be transmitted from another interface. For a local area network, the interface that connects to all
local hosts is usually known as the internal interface, while the interface that is visible downstream to an ISP
or another subnet is known as the external interface. By using packet filtering, it is possible to specify a set of
rules governing what type (TCP or UDP) of packets can be transferred between interfaces and on which
ports. This is obviously important for protecting local networks, since services that are available to local hosts
may not be appropriate for public access.

The route discovery daemon, in.rdisc, implements the Internet Control Message Protocol (ICMP). In terms of
route discovery, in.rdisc running on host systems listens for multicast broadcasts on the 224.0.0.1
(ALL_HOSTS) address. These messages are prioritized, and the default router is selected based on its
proximity to the host. On routers, in.rdisc broadcasts its availability using multicast on 224.0.0.1, and
listens for requests on 224.0.0.2 (ALL_ROUTERS). Hosts may request a router directly by broadcasting
on 224.0.0.2.

Back to: Solaris 8 Administrator's Guide

oreilly.com Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
International | About O'Reilly | Affiliated Companies | Privacy Policy

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

http://www.oreilly.com/catalog/solaris8/
http://www.oreilly.com/
http://www.oreilly.com/sales/bookstores
http://www.oreilly.com/order_new/
http://www.oreilly.com/oreilly/contact.html
http://www.oreilly.com/international/
http://www.oreilly.com/oreilly/about.html
http://www.oreilly.com/affiliates.html
http://www.oreilly.com/privacy_policy.html
mailto:webmaster@oreilly.com

